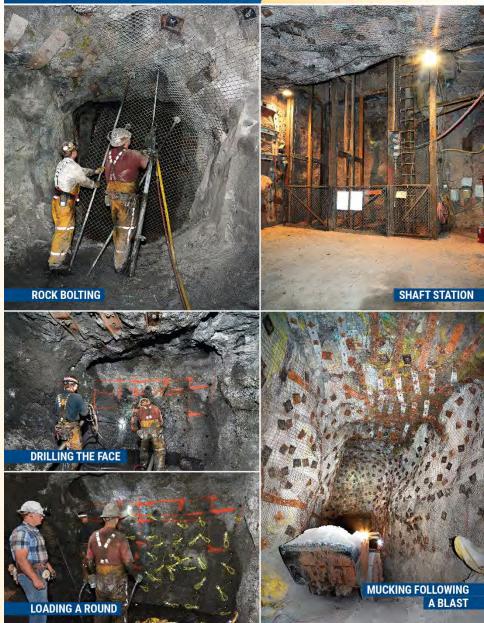
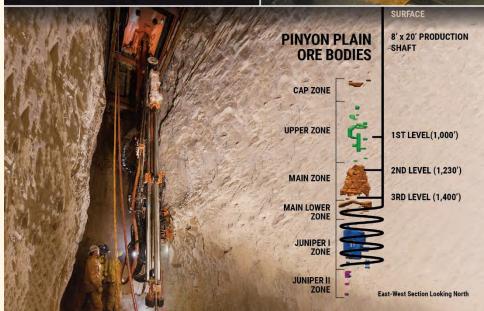


Poster Library


Updated Sept 24, 2021

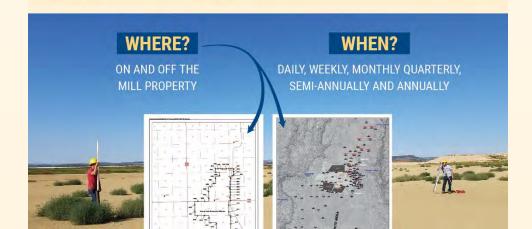
MINING

UNDERGROUND MINING



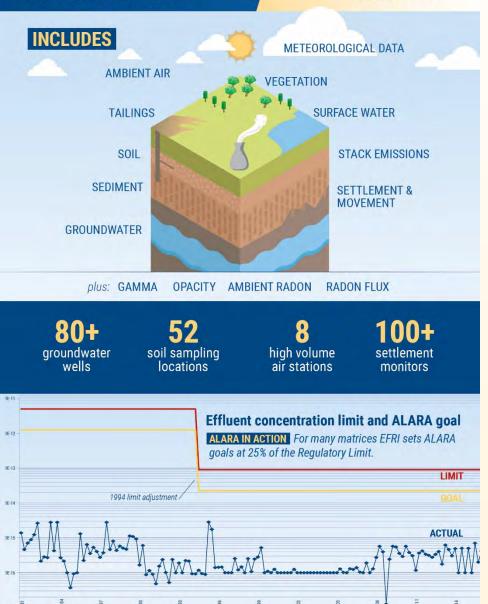
PINYON PLAIN MINE Tusayan, AZ

ENVIRONMENTAL



RADIATION AND ENVIRONMENTAL MONITORING

are kept to a minimum



are kept to a minimum

RADIATION AND ENVIRONMENTAL MONITORING

REGULATORY OVERSIGHT

100.00 | GAMMA LIMIT (mRem/year)

REGULATED BY:

80.00

60.00

Utah Division of Water Rights

40.00

ASSESSMENT

- Compliance monitoring is reported quarterly, semi-annually and annually
- All results are scrutinized and assessed by regulators for compliance to applicable standards

Courtment Section	Mar I	CHATT		11% 11 (EBW (I)		JW H		Water Hill 75st Ta	586 23 (4 Section)	HW 2:	Mar 51	MP 26 Fina III)	(CIRC
Managara (Managara)	123	5.6	3.62	6.11	or:	12.6	9.21	0.36	0.0	- 7	0.71	6.77	121
Shander Street on V	6.12	EF	2.5	1.5	- 6	100	0.27	5	1		7.0	6.52	100
Bern Meak (1991)	€.17	8,3	- 13	1.7	-	-	0.27			- 3	-	4.52	-
		13	-17	15 .	25		25	27	25	17		25	
Minais.	25	- 22	1	- 12	- 6	25	42	- 0	- 61	- 1/	- 22	- 20	71
	<u></u>	- 2	- 4		7	7	-3-			_	- 3		- 4
Oxfolia:	3.7	3.2	1	122		2.7	2.5	2.5	2.5	633	14	27	22
Chrystan	50	- 51	.25	25	50	51	- 55	51	150	53	.59	50	10
Cotodi	365	365	182.5	112.75	345	307	565	345	365	Mil	381	341	47
Distant	550	(8)	.T)4	726	510	650	0.00	CET	558	190	683	150	6%
ion	1316	5568	277.0	2796	5500	5548	42.7	5530	1540 .	1962	5506	2675.63	200
red.	75	12.9	61	4 = 1	191	7.5	7.5	7.7	79.1	11.6	5.6	2.5	2.5
Vicesages	275.74	202	276.7c	364.6"	2085.5	2230.3	106	935.6	554	7997	1804	1632	10
VICTOR				8.7	- 1	1	100	- 1	1		1		- 1
Voltolenu	20	26	-17	16	20	2.5	- 20	22	20	30	20	20	20
Walst	120	1005	44.1	46.2	120	-58	17	53	-50	53	750	50	110
Stiefer	36.6	222.78	32.5	12.5	75	22	126.7	22	25	25	25	25	12.5
Merc	-65	-10	26	23	165	-18	.56	SE	160	-93	Alt	-60	10
makee		1.1	0.00	9.5		1		- 1	1.0	27.	1.1		1
fin.	g/m	900	3113	4734	8'00	19648	6500	1500	2'00	9300	3196	890	× io
Joseph	12.65	35	7.5	7.5	22.5	66	45.7	17.66	22	11.9	726	119	4.2
vacation	26	10	-	65	- 20	30		24		-20	- 20	20	10
***	250	0.55	67.30	3234	2500	25.34	2500	2533	24	2300	2576	2500	- 61
Ratherin (nOS)	-	- 100	744	447		100	430	4///	-		-	-65	- 27
Trea of marries St. A.	1.7	2.4	377	5-4	71	2.1	71	2.8	2.84		2.0	6.52	2.43
Volatile Overrole Comment						-			-				1
Acrase	330	397	100	1/0	(00)	300	0.0	229	128	101	323	-339	55
Accept.	25	2.9	321	145	25	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Vehi elalimor	2000	2668	(619)	2266	2000	2668	2000	2300	2009-	2300	2006	2000	260
Darbon surrebloods	3.6	2.5	3.94	8.25	24	2.5	24	2.5	24	34	3.6	- 5	2.5
"Manches													

- Regulators collect split samples for independent analysis
- The mill is inspected **by regulators** approximately
 20 times per calendar year
- The mill has an extensive Quality Assurance/Quality Control program to ensure data are defensible, usable, representative and comparable

INTRO 101

URANIUM 101

WHAT IS URANIUM?

- · A mildly radioactive, naturally-occurring metallic element
- · As common in the Earth's crust as tin, tungsten, & molybdenum
- · Occurs naturally in rock, soil, food, and water
- · Primarily used as the fuel for clean, carbon-free nuclear energy

HOW DO NUCLEAR REACTORS WORK?

- Two main isotopes of uranium: U-238 (99.3%) & U-235 (0.7%)
- · U-235 fissions easily, creating heat in the process
- · Nuclear reactors produce electricity by harnessing this heat to produce steam that drives turbines and generators.

HOW IS NATURAL URANIUM MADE INTO NUCLEAR FUEL?

MINING & MILLING:

Companies like Energy Fuels produce natural uranium concentrate (U₃O₈) that is sold to nuclear utilities.

2 CONVE

CONVERSION:

converted into a gas called uranium hexfluoride (UF6).

3 ENRICHMENT: The unenriched UF6 is placed into centrifuges for enrichment, increasing the percentage of U-235 from 0.7% to 4%-5%, allowing controlled fission to occur.

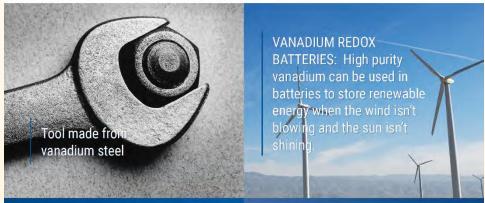
FUEL **FABRICATION:**

The enriched UF6 is formed into solid UO2 fuel pellets that are placed into metal tubes, and bundled into fuel assemblies that are loaded into nuclear reactors.

ENERGY FUELS' URANIUM MINES, MILLS, AND PRODUCTION FACILITIES

VANADIUM 101

WHAT IS VANADIUM?


- · A naturally-occurring metallic element
- The most common forms of industrial vanadium are vanadium pentoxide (V_2O_5) and ferrovanadium (FeV)

WHAT IS VANADIUM USED FOR?

- · Primarily used in high strength steel, titanium, and other alloys
- High capacity batteries using vanadium currently being commercialized for use in renewable energy systems

The 1st large-scale commercial use of vanadium was in the steel chassis of the Model T

ENERGY FUELS' LA SAL COMPLEX AND WHIRLWIND MINES CONTAIN HIGH-GRADE VANADIUM

NUCLEAR ENERGY 101

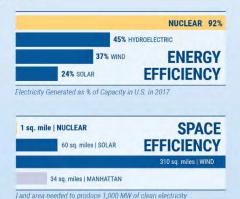
NUCLEAR PROVIDES CLEAN, CARBON FREE, 24/7 ELECTRICITY— ALL FUELED BY URANIUM

AROUND THE WORLD

443 operable reactors

57 reactors under construction

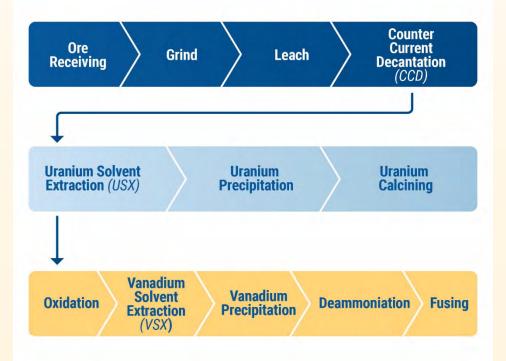
reactors on order, planned, or proposed


IN THE UNITED STATES

- The U.S. is the largest producer of nuclear energy in the world
- 20% of all electricity and 50% of all the clean, carbon-free electricity – in the U.S. comes from nuclear
- The U.S. does not currently mine enough uranium to fuel a single reactor
 About 50% of U.S. uranium imports come from Russia, China and their allies

ENORMOUS DEPENDENCE ON IMPORTED URANIUM

NUCLEAR FACTS



Uranium / Vanadium ORE PROCESS

RECLAMATION

MINE RECLAMATION

Restoring Disturbed Land to a Beneficial Use

RECLAMATION BEGINS WITH PLANNING

- · Environmental baseline studies
- Detailed plans approved by government officials
- · Reclamation bonds to ensure successful completion of the process

HACK CANYON MINE

WHY THE PAST WILL NOT BE REPEATED

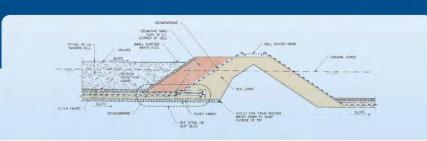
- ► Today's environmental standards
- ► The mining industry's commitment to health, safety & the environment

MILL TAILINGS RECLAMATION

BEAR CREEK URANIUM MILL, WYOMING

Reclaimed Site Owned by Federal Government

L BAR TAILINGS SITE, NEW MEXICO


KEY DESIGN FEATURES

V Radon Barrier

Vegetative Evapotranspiration Cover

Impermeable Multiple Liners to Prevent Seepage

ALTERNATE FEED MATERIALS

WHAT ARE THEY?

- Uranium-bearing materials other than conventional ores
- Often process residue streams from other metal processing facilities and uranium conversion processes
- · Can be low-cost sources of uranium
- Environmentally responsible recycling of valuable resources
- Tailings from processing alternate feeds are permanently disposed of at the Mill as 11e.(2) byproduct material and ultimately transferred to the US Govt. on mill final closure

EXAMPLES

Uranium-bearing tailings from other metal processing facilities Process residues from uranium conversion facilities

Uranium-bearing resins from municipal drinking water treatment facilities

Facility decommissioning materials & debris from FUSRAP and other government and private sites

IMPORTANCE OF WHITE MESA MILL

The mill is the only operating facility in the U.S. capable of processing and disposing of these types of materials.

2 GOVERNMENT SERVICE:

The mill provides a cost-effective, environmentally secure recycling and disposal option to the US Govt. for many of these materials.

3 ECONOMICS: Processing of

alternate feeds allows the mill to continue operating when uranium prices are low.

TRACK RECORD:

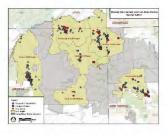
Energy Fuels has received authorizations to process over 20 different alternate feeds over the last 30 years and has recovered about 4 million lbs of uranium in the process.

◆ Decontaminating alt feed shipment truck before leaving mill

WHAT ARE AUMs?

ABANDONED URANIUM MINES

- · Historic mines from the 1950s-60s
- · No reclamation/closure requirements at that time
- · Mainly supplied uranium to the U.S. government
- Now being reclaimed by the government, Navajo Nation and responsible parties


500+ on Navajo Reservation 100+ on USFS, BLM land in Four Corners area **MILLIONS**

of tons of waste rock ore

\$2 BILLION

committed for remediation

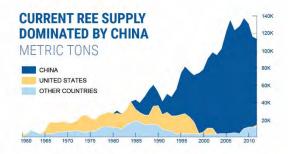
PROGRESS TO DATE VERY SLOW

WHITE MESA MILL'S ROLE

- Most materials are conventional ores and can be processed by the mill right now, under its existing licensing
- Recover valuable uranium
- Tailings from processing will be permanently disposed of in the mill's state-of-the-art tailings facilities as 11e.(2) byproduct material
- Title will ultimately be transferred to the U.S. Government on final mill closure

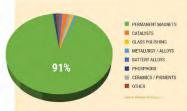
RARE EARTH ELEMENTS

RARE EARTH ELEMENTS



PROCESSED FOR DIFFERENT END USES

REEs In Electric Vehicles


Demand Expected to Increase Significantly

USES BY VOLUME

USES BY VALUE

A PERFECT FIT: Monazite Ore from Chemours ~ 0.2% U₃O₈

Waste streams will be relatively small.

(Feed quantities less than uranium processing)

Process utilizes existing equipment and expertise.

Grade is similar to surrounding uranium mines.

(La Sal Complex: 0.18 - 0.21% U₃O₈)

THE WHITE MESA RARE EARTH PROCESS

1. Monazite Arrives at Mill
Shipped in a closed container from Georgia

2. Rare Earths Extracted

Monazite is broken down with crack and leach process

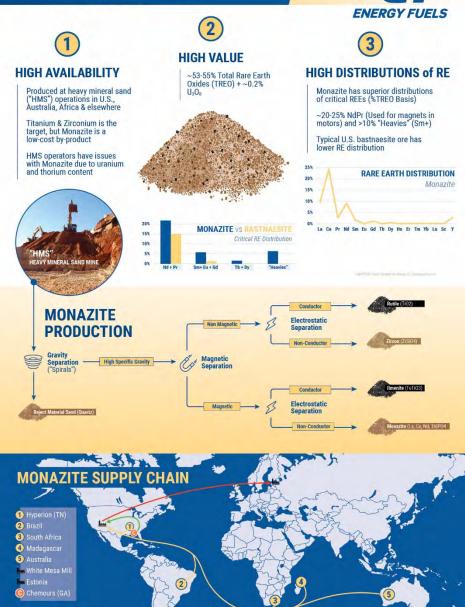
3. Rare Earths Put into Solution Produces a high purity solution of all rare earths

4. Uranium, Thorium & Radium Removed
Used for nuclear fuel, cancer treatments + other uses

5. Rare Earths Precipitated & Bagged

We precipitate the mixture of Rare Earths as carbonate and prep for shipping to Estonia

6. WHITE MESA TO PRODUCE REES

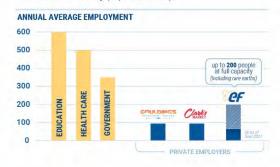

Lab work is underway to design a specific process to produce individual Rare Earths at the Mill. This process is similar to how we produce uranium and vanadium.

Note: at this point in the process, all radionuclides have been removed.

WHY MONAZITE?

Rare Earth Carbonate Supply
Existing Monazite Supply
Otential Future Monazite Supply

COMMUNITY INVOLVEMENT


COMMUNITY BENEFITS

EMPLOYMENT

MAJOR EMPLOYER

One of the Largest Private Employers in San Juan County (top 15 overall)

HIGH QUALITY JOBS

27.5% Higher Salaries than Median Household Income

ENGAGED COMMUNITY PARTNER

HIGH SCHOOL CONTRIBUTOR

- Provides financial support to FIELDS Program at Whitehorse High School on Navajo Nation
- Provides internships in electromechanical technology work at the Mill

Takenya Yazzie Whitehorse High School FIELDS Scholar and FIELDS Intern at Energy Fuels

- 66 I have a bright future. I see myself doing big things because of this program. The hands-on learning has allowed me to understand what goes on at the Mill and troubleshoot. I'd like to see other Navajo students join the program and have a shot at a better future.
 - Provides scholarships to high school seniors entering math and science fields:

2021

\$5,000 to San Juan High School \$5,000 to Whitehorse High School

LOCAL EVENT SPONSOR

- July 4th celebration (a major regional attraction)
- . Blanding Fall Festival & Youth Rodeo Series
- San Juan County Fair Junior Livestock Show
- All high school football & basketball game broadcasts

SMALL BUSINESS SUPPORTER

- Clarks Market
- . Bearskin Custom Ink
- · Redd's Ace Hardware
- Local young entrepreneurs (bakers, sticker makers, etc.)

Canvonlands Parks

Donations and Board Membership

SAN JUAN COUNTY

Clean Energy Foundation

Energy Fuels is establishing a new San Juan County focused community investment fund to share the benefits of the Mill's new clean tech future

WHY?

Energy Fuels cares about the local community surrounding White Mesa Mill, and we want to set up a long-term institution with ongoing funding to boost local priorities

POTENTIAL AREAS of FOCUS

LOCAL LEADERSHIP & FUNDING

- A Board including representatives from the community to help the Fund fit the needs of the communities
- Community will help direct the goals and vision of the Fund
- Board designed to provide accountability and management of the Fund
- Support local assets and institutions

\$1 million initial contribution from Energy Fuels

Annual funding equal to 1% of mill revenues

ESG/CLIMATE CHANGE

"Climate change is the number one issue facing humanity."

President Joe Biden

Energy Fuels is at the forefront of the effort to electrify the US:

- + existing uranium production
- + vanadium business
- + entry into rare earths elements!

We responsibly produce the raw materials needed for many clean energy and advanced technologies

RARE EARTHS QUICK FACTS

- · Needed for electric vehicles (EVs), wind energy, batteries, cell phones, computers
- Energy Fuels could create 100+ clean-tech jobs at White Mesa Mill in rare earths

URANIUM QUICK FACTS

- · Uranium fuels carbon-free, emission-free nuclear power-one of the cleanest forms of energy in the
- · Nuclear energy provides nearly 55% of carbon-free electricity in the US

VANADIUM QUICK FACTS

- · Vanadium is used primarily in the steel, alloys, and chemical industries
- · Grid-scale batteries using vanadium now being deployed

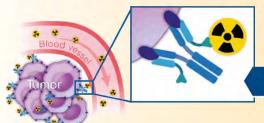
RECYCLING

Energy Fuels has recycled 6 million pounds of uranium, which when converted to nuclear fuel will:

Eliminate over 85 million tons of CO2

Produce as much electricity as coal in a train that extended from LA to NYC - and almost all the way back

Produce as much electricity as 24,500 wind turbines annually



CANCER TREATMENTS

CANCER TREATMENT

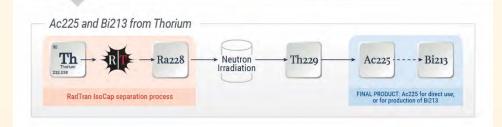
Extracting Radioactive Isotopes from Thorium

Targeted Alpha Therapies (TAT)

A cutting edge cancer treatment that shows great potential to treat cancers with reduced impact on surrounding healthy tissue.

Targeting mechanisms seek out cancerous cells and deliver radioactive isotopes to destroy them.

PROBLEM: Shortage of Radioactive Isotope Material


- ▶ Methods for production are exorbitantly expensive
- Isotope production isn't scalable to meet the demand of new drugs
- ▶ Shortage limits research and development of new TAT drugs

SOLUTION: IsoCap Technology

- An efficient & lower cost way to extract target isotopes
- Isotopes can be extracted from thorium-232 and/or uranium-238

RadTran's patented IsoCap-AA technology extracts medical isotopes for cancer therapeutics—specifically the rare alpha-emitters: Pb-212, Ac-225, Bi-213, Ra224, Ra-223

RESULT: A Scalable Supply of Effective TAT Drugs

IsoCap provides pharmaceutical companies the means to develop new drugs from natural byproducts of mining